How Far

1. A student investigates the reaction between ethanoic acid, CH₃COOH(I) and methanol, CH₃OH(I), in the presence of an acid catalyst. The equation is shown below.

 $CH_3COOH(I) + CH_3OH(I) \rightleftharpoons CH_3COOCH_3(I) + H_2O(I)$

The student carries out an experiment to determine the value of K_{c} for this reaction.

The student mixes 9.6 g of CH₃OH with 12.0 g of CH₃COOH and adds the acid catalyst.

When the mixture reaches equilibrium, 0.030 mol of CH₃COOH remains.

Calculate K_{c} for this equilibrium.

K c =[4]

2. Methanol, CH3OH, can be made industrially by the reaction of carbon monoxide with hydrogen, as shown in **equilibrium 1**.

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -91 \text{ kJ mol}^{-1}$

Equilibrium 1

At 298 K, the free energy change, ΔG , for the production of methanol in **equilibrium 1** is -2.48×10^4 J mol⁻¹.

 ΔG is linked to K_p by the relationship: $\Delta G = -RT \ln K_p$.

R = gas constant T = temperature in K.

Calculate K_{p} for **equilibrium 1** at 298 K.

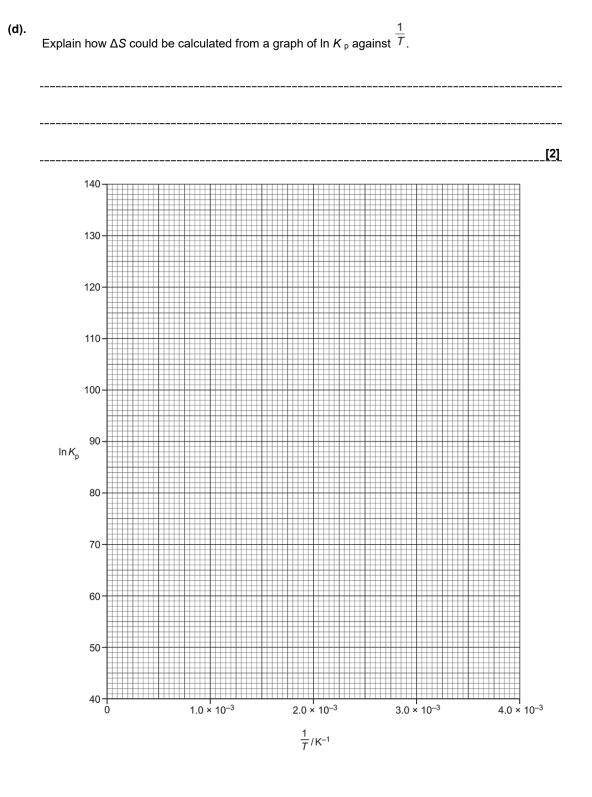
Give your answer to 3 significant figures.

3(a). The equilibrium constant K_p and temperature T (in K) are linked by the mathematical relationship shown in **equation 5.1** (R = Gas constant in J mol⁻¹ K⁻¹ and ΔH is enthalpy change in J mol⁻¹).

 $\ln K_{\rm p} = -\frac{\Delta H}{R} \times \frac{1}{T} + \frac{\Delta S}{R}$ Equation 5.1

The table shows the values of K_{p} at different temperatures for an equilibrium.

Complete the table by adding the missing values of $\overline{\overline{T}}$ and ln K_{p} .


Temperature, T / K	400	500	600	700	800
Кр	3.00×10^{58}	5.86 × 10 ⁴⁵	1.83 × 10 ³⁷	1.46 × 10 ³¹	1.14 × 10 ²⁶
$\frac{1}{T}$ / K ⁻¹	2.50 × 10 ^{−3}				
In K _p	135				

[2]

(b). State and explain how increasing the temperature affects the position of this equilibrium and whether the forward reaction is exothermic or endothermic.

 [1]

(c). Plot a graph of ln K_p against $\frac{1}{T}$ using the axes provided on the opposite page. Use your graph and **equation 5.1** to determine ΔH , in kJ mol⁻¹, for this equilibrium. Give your answer to **3** significant figures.

4. What is the partial pressure of O_2 (in Pa) in a gas mixture containing 21% O_2 by volume and with a total pressure of 1.0 × 10⁵ Pa?

partial pressure of O_2 = Pa [1]

5. Succinic acid (CH₂COOH)₂ is esterified by ethanol, C₂H₅OH, in the presence of an acid catalyst to form an equilibrium mixture. Succinic acid is esterified by ethanol, C₂H₅OH, in the presence of an acid catalyst to form an equilibrium mixture.

The equilibrium constant, K_c , for this equilibrium can be calculated using the amounts, in moles, of the components in the equilibrium mixture, using expression 5.1.

$$K_{\rm c} = \frac{n((\rm CH_2\rm COOC_2\rm H_5)_2) \times n(\rm H_2\rm O)^2}{n((\rm CH_2\rm COO\rm H)_2) \times n(\rm C_2\rm H_5\rm O\rm H)^2}$$
 Expression 5.1

A student carries out an experiment to determine the value of K_c for this equilibrium.

- The student mixes together 0.0500 mol of succinic acid and 0.150 mol of ethanol, with a small amount of an acid catalyst.
- The mixture is allowed to reach equilibrium. .
- The student determines that 0.0200 mol of succinic acid are present in the equilibrium mixture.

i. Which technique could be used to determine the equilibrium amount of succinic acid?

		[1]
ii.	Write the equation for the equilibrium reaction that takes place.	
		[1]

iii. Draw the skeletal formula of the ester present in the equilibrium mixture.

....

		[1]
iv.	K_{c} is the equilibrium constant in terms of equilibrium concentrations.	
	Why can expression 5.1 be used to calculate K_c for this equilibrium?	
		[1]

v. Calculate the value of *K*_c for this reaction.

Show your working.

*K*_c = [3]

6(a). Nitrogen monoxide, NO, and oxygen, O₂, react to form nitrogen dioxide, NO₂, in the reversible reaction shown in **equilibrium 18.1**.

 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ Equilibrium 18.1

Write an expression for K_c for this equilibrium and state the units.

Kc =

Units =

[2]

- (b). A chemist mixes together nitrogen and oxygen and pressurises the gases so that their total gas volume is 4.0 dm³.
 - The mixture is allowed to reach equilibrium at constant temperature and volume.
 - The equilibrium mixture contains 0.40 mol NO and 0.80 mol O₂.
 - Under these conditions, the numerical value of K_c is 45.

Calculate the amount, in mol, of NO2 in the equilibrium mixture.

amount of NO₂ = mol [4]

(c). The values of K_p for equilibrium 18.1 at 298 K and 1000 K are shown below.

 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$

Equilibrium 18.1

Temperature / K	<i>K</i> _p / atm ^{−1}
298	$K_{\rm p} = 2.19 \times 10^{12}$
1000	<i>K</i> p = 2.03 × 10 ⁻¹

i. Predict, with a reason, whether the forward reaction is exothermic or endothermic.

.....[1]

The chemist increases the pressure of the equilibrium mixture at the same temperature.
 State, and explain in terms of K_p, how you would expect the equilibrium position to change.

[3]

7. A chemist investigates the equilibrium reaction between sulfur dioxide, oxygen, and sulfur trioxide, shown below.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

- The chemist mixes together SO₂ and O₂ with a catalyst.
- The chemist compresses the gas mixture to a volume of 400 cm³.
- The mixture is heated to a constant temperature and is allowed to reach equilibrium without changing the total gas volume.

The equilibrium mixture contains 0.0540 mol SO₂ and 0.0270 mol O₂.

At the temperature used, the numerical value for K_c is 3.045 × 10⁴ dm³ mol⁻¹.

i. Write the expression for K_c and the units of K_c for this equilibrium.

ii. Determine the amount, in mol, of SO₃ in the equilibrium mixture at this temperature.
Give your final answer to an **appropriate** number of significant figures.
Show all your working.

equilibrium amount of SO₃ mo

8. Iron can be extracted from its ore Fe₃O₄ using carbon. Several equilibria are involved including **equilibrium 18.1**, shown below.

 equilibrium 18.1
 $Fe_3O_4(s) + 4C(s) \rightleftharpoons 3Fe(s) + 4CO(g)$ $\Delta H = +676.4 \text{ kJ mol}^{-1}$

 i.
 Why is equilibrium 18.1 a heterogeneous equilibrium?

 [1]

 ii.
 Write the expression for K_p for equilibrium 18.1.

- The forward reaction in equilibrium 18.1 is only feasible at high temperatures. iii.
 - \circ Show that the forward reaction is **not** feasible at 25 °C.
 - Calculate the minimum temperature, in K, for the forward reaction to be feasible. 0

minimum temperature = -----

Another equilibrium involved in the extraction of iron from Fe_3O_4 is shown below. iv.

 $Fe_3O_4(s) + 4CO(g) \rightleftharpoons 3Fe(s) + 4CO_2(g)$ $\Delta H = -13.5 \text{ kJ mol}^{-1}$

Enthalpy changes of formation, $\Delta_f H$, for Fe₃O₄(s) and CO₂(g) are shown in the table.

Compound	∆ _f <i>H</i> / kJ mol ^{−1}
Fe ₃ O ₄ (s)	-1118.5
CO ₂ (g)	-393.5

Calculate the enthalpy change of formation, $\Delta_f H$, for CO(g).

 $\Delta_{\rm f} H$, for CO(g) = kJ mol⁻¹ [3]

9. Peroxycarboxylic acids are organic compounds with the COOOH functional group.

Peroxyethanoic acid, CH₃COOOH, is used as a disinfectant.

i. Suggest the structure for CH₃COOOH. The COOOH functional group must be clearly displayed.

ii. Peroxyethanoic acid can be prepared by reacting hydrogen peroxide with ethanoic acid. This is a heterogeneous equilibrium.

 $\mathrm{H_2O_2(aq)} + \mathrm{CH_3COOH(aq)} \rightleftharpoons \mathrm{CH_3COOOH(aq)} + \mathrm{H_2O(I)} \qquad K_{\mathrm{c}} = 0.37 \ \mathrm{dm^3 \ mol^{-1}}$

A 250 cm³ equilibrium mixture contains concentrations of 0.500 mol dm⁻³ H₂O₂(aq) and 0.500 mol dm⁻³ CH₃COOH(aq).

Calculate the amount, in mol, of peroxyethanoic acid in the equilibrium mixture.

amount = mol [3]

 $I_2(s) \rightleftharpoons I_2(aq)$

Equilibrium 1

Solid iodine is much more soluble in an aqueous solution of potassium iodide, KI(aq), than in water.

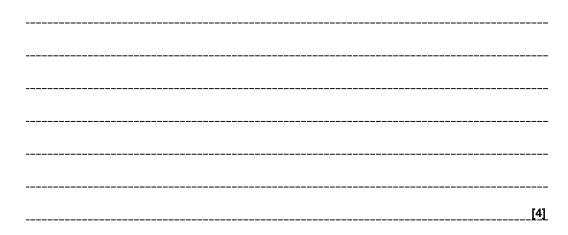
Equilibrium 2 is set up.

 $I_2(aq) + I^-(aq) \rightleftharpoons I_3^-(aq)$

Equilibrium 2

A student dissolves I_2 in KI(aq). The resulting 200 cm³ equilibrium mixture contains:

> 4.00 × 10⁻⁵ mol l₂(aq) 9.404 × 10⁻² mol l⁻(aq) 1.96 × 10⁻³ mol l₃⁻(aq).


Calculate K_c for equilibrium 2.

Give your answer to an **appropriate** number of significant figures.

K_c = units[4] (b). The student adds an excess of aqueous silver nitrate, $AgNO_3(aq)$, to the equilibrium mixture.

Predict what would be observed.

Explain the observations in terms of both **equilibrium 1** and **equilibrium 2** and any species formed.

1 A chemist investigated methods to improve the synthesis of sulfur trioxide from sulfur dioxide and oxygen. 1.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The chemist:

- mixed together 1.00 mol SO₂ and 0.500 mol O₂ with a catalyst at room temperature
- compressed the gas mixture to a volume of 250 cm³
- allowed the mixture to reach equilibrium at constant temperature and without changing the total gas volume.

At equilibrium, 82.0% of the SO₂ had been converted into SO₃.

i. Determine the concentrations of SO₂, O₂ and SO₃ present at equilibrium and calculate K_c for this reaction.

ii. Explain what would happen to the pressure as the system was allowed to reach equilibrium. ------.....[1] iii. The value of K_c for this equilibrium decreases with increasing temperature. Predict the sign of the enthalpy change for the forward reaction. State the effect on the equilibrium yield of SO₃ of increasing the temperature at constant pressure. ΔH : Effect on SO3 yield: ------[1] iv. The chemist repeated the experiment at the same temperature with 1.00 mol SO₂ and an excess of O₂. The gas mixture was still compressed to a volume of 250 cm³. State and explain, in terms of K_c , how the equilibrium yield of SO₃ would be different from the yield in the first experiment. _____ [3]

12(a). Ethyne gas, C₂H₂, is manufactured in large quantities for a variety of uses.

Much of this ethyne is manufactured from methane as shown in the equation below.

 $2CH_4(g) \rightleftharpoons C_2H_2(g) + 3H_2(g) \qquad \Delta H = +377 \, \text{kJ} \, \text{mol}^{-1}$

Write an expression for K_c for this equilibrium.

- (b). A research chemist investigates how to improve the synthesis of ethyne from methane at a high temperature.
 - The chemist adds CH₄ to a 4.00 dm³ container.
 - The chemist heats the container and allows equilibrium to be reached at constant temperature. The total gas volume does not change.
 - The equilibrium mixture contains 9.36×10^{-2} mol CH₄ and 0.168 mol C₂H₂.

i. Calculate the amount, in mol, of H₂ in the equilibrium mixture.

amount of H₂ = mol [1]

ii. Calculate the equilibrium constant, K_c, at this temperature, including units.

Give your answer to three significant figures.

K_c =[3]

iii. Calculate the amount, in mol, of CH₄ that the chemist originally added to the container.

amount of CH₄ = mol [1]

(c). The chemist repeats the experiment three times. In each experiment the chemist makes one change but uses the same initial amount of CH₄.

Complete the table to show the predicted effect of each change compared with the original experiment.

Only use the words greater, smaller or same.

Change	Kc	Equilibrium amount of C ₂ H ₂ (g) / mol	Initial rate
The container is heated at constant pressure			
A smaller container is used			
A catalyst is added to CH₄ at the start			

13(a). A research chemist investigates how the value of K_c changes with temperature.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \quad \Delta H = -92 \text{ kJ mol}^{-1}$

- The chemist mixes 0.800 mol of N₂(g) and 2.400 mol of H₂(g) and leaves the mixture to reach equilibrium at 300 °C.
- The total volume of the equilibrium mixture is 5.00 dm³.
- At equilibrium, 0.360 mol of NH₃(g) has formed.

Calculate the value of K_c under these conditions.

Show all your working.

(b). Ammonia, NH₃, is manufactured by the chemical industry from nitrogen and hydrogen gases.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

 $\Delta H = -92 \text{ kJ mol}^{-1}$

- An iron catalyst is used which provides several benefits for sustainability.
- The chemical industry uses operational conditions that are different from the conditions predicted to give a maximum equilibrium yield.

The chemist adds more nitrogen to the equilibrium mixture in (b). $N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g) \qquad \Delta H = -92 \text{ kJ mol}^{-1}$

The temperature is kept at 300 K and the volume at 5.00 dm³.

The chemist predicts that the addition of nitrogen will increase the proportion of H₂(g) that reacts.

	i.	Explain whether the chemist's prediction is correct.	
			[3]
	ii.	Suggest why the chemist is more concerned with increasing the proportion of H_2 that reacts rather than the proportion of N_2 that reacts.	
			[1]
14(2)	Ammo	nia is a gas with covalently-bonded molecules consisting of nitrogen and hydrogen atom	c
ι - (α).		nia can be made from the reaction of nitrogen and hydrogen in the Haber process. Fe catalyst	5.
	N2(g) +	+ $3H_2(g)$ $450 ^{\circ}C \text{ and } 200 ^{\text{kPa}}$ 2NH ₃ (g) $\Delta H = -92 ^{\text{kJ}} \text{mol}^{-1}$ Equation 1	
	What e and or	effect will increasing the temperature have on the composition of the equilibrium mixture the value of the equilibrium constant?	
	Explair	n your answer.	
			[2]

(b). A chemist mixes together $0.450 \text{ mol } N_2$ with $0.450 \text{ mol } H_2$ in a sealed container.

The mixture is heated and allowed to reach equilibrium.

At equilibrium, the mixture contains 0.400 mol N_2 and the total pressure is 500 kPa.

Calculate K_p.

Show all your working.

Include units in your answer.

END OF QUESTION PAPER